Tavola con asticine dell’addizione e tavole di controllo ESERCIZI

Tavola con asticine dell’addizione e tavole di controllo ESERCIZI. Una raccolta di presentazioni, giochi ed esercizi per l’addizione secondo la psicoaritmetica Montessori.

Tutto il materiale stampabile illustrato in questo articolo si trova qui:

Tavola dell’addizione e asticine – Esercizi

Scopo: aiutare il bambino a conoscere e memorizzare tutte le possibili combinazioni dell’addizione di numeri da 1 a 9, per facilitare la comprensione delle operazioni e il calcolo mentale.

La linea rossa che divide verticalmente la tavola dell’addizione ci dice, per ogni numero che eccede il 10, di quante unità oltre la decina è composto il numero stesso.  Mostra cioè al bambino che i numeri sono divisi in due parti: una parte rappresenta una decina completa, l’altra parte è il resto di unità che non hanno raggiunto una decina. Questo è il meccanismo generale dell’addizione che  vogliamo sia appreso dai bambini.

Controllo dell’errore: Il bambino controlla il lavoro sulle tavole di controllo Tavola I e Tavola II.
Età: 5 anni e 1/2 – 6 anni

Presentazione 1

Per prima cosa illustriamo al bambino la Tavola con asticine, mostrando bene la linea rossa che scorre in verticale tra i numeri 10 e 11; indicargli i numeri che si trovano nella parte superiore della tavola e dirgli che è li che troverà la risposta che cerca.

Prendere tutte le asticine blu e metterle in ordine decrescente; fare la stessa cosa con le asticine rosse.

Chiedete al bambino di scegliere un’asticina blu e posizionarla sulla prima riga della tavola. (Ad esempio l’asticina del 6). Scegliamo un’asticina rossa, cercando di evitare che la somma superi il 10 (ad esempio l’asticina del 3) e posizioniamola a destra della striscia blu.

Mostriamo quindi al bambino che 6 più 3 è uguale a 9

Ripetiamo l’esercizio, ma questa volta facendo in modo che la somma superi la decina, e mostrare chiaramente al bambino la linea rossa verticale che indica che il numero ottenuto è maggiore di 10.

Presentazione 2

L’insegnante invita il bambino ad unirsi a lei in questo esercizio, insieme portano al tavolo tutto il materiale necessario, poi si siede accanto a lui, dal suo lato non dominante; il bambino sceglie un cartellino delle addizioni da svolgere, legge a voce alta, poi posa il cartellino sul tavolo.

Per esempio, se si tratta di 9 +5= , l’insegnante prende  l’asticina blu del 9 e la mette sulla tavola dell’addizione, poi prende l’asticina rossa del 5 e la mette alla fine dell’asticina blu, quindi fa notare al bambino che le due asticine insieme terminano sulla casella 13.

Il bambino prende il cartoncino dei risultati corrispondente, lo pone a destra di quello dell’operazione, poi scrive sul foglio a quadretti l’operazione ed il suo risultato.

Presentazione 3

Mostriamo al bambino il primo modulo per l’addizione scritta, quello dell’1. La prima operazione è 1 + 1 =

Il bambino metterà sulla tavola dell’addizione un’asticina blu dell’1 e un’asticina rossa dell’1.

Mostriamo al bambino che il risultato dell’operazione è 2:

Il bambino scrive il risultato sul modulo, quindi prosegue completando, anche nei giorni seguenti, tutti i moduli.

Una volta che ha completato i moduli da 1 a 9, possiamo introdurre la Tavola I di controllo, e aiutare il bambino a verificare la correttezza del lavoro svolto sui moduli.

Presentazione 4

Chiediamo al bambino di mettere sulla Tavola dell’Addizione, ad esempio, un’asticina blu del 5 e una rossa del 3. La somma sarà 8.

Poi chiediamogli di mettere un’asticina del 3 blu e un’asticina 5 rossa. La somma sarà ancora 8.

Osserviamo col bambino come nelle due operazioni i colori appaiano in ordine differente, e che comunque il risultato finale è identico.

Fare molti esercizi di questo genere.

Presentazione 5

Il bambino posiziona, ad esempio, l’asticina blu dell’8 sulla Tavola dell’addizione. Poi prende un pezzetto di carta a quadretti e scrive 8. Chiediamo al bambino: “Cosa fa 8?”

Partendo dall’asticina blu dell’1, il bambino aggiunge l’asticina rossa che serve a raggiungere l’8, quindi trascrive l’operazione sul suo foglietto; in questo modo:

Per le operazioni identiche (ad esempio 7+1 e 1+7) possiamo spiegare al bambino come eliminare una delle due, che rappresenta un duplicato, e come cancellarle (tirando una riga) anche dal foglietto.

Il bambino può poi controllare il suo lavoro sulla Tavola II di  controllo.

Esercizi con la TAVOLA III

Il bambino farà scorrere la mano destra lungo le linee orizzontali, e la mano sinistra lungo le linee verticali per trovare la somma.

Materiale necessario:  Tavola III dell’addizione; moduli delle addizioni;  cartellini degli esercizi per l’addizione; tavola di controllo (Tavola I) dei risultati.

Presentazione 1: l’insegnante  invita il bambino ad unirsi a lei nell’esercizio,  porta quindi al tavolo del bambino il materiale, e il bambino sceglie un cartellino dell’addizione.

L’insegnante chiede al bambino di  leggere ad alta voce l’operazione, ad esempio: “Due più sei uguale…” e pone il cartellino scelto sul tavolo

quindi gli mostra come trovare il risultato sulla tavola dell’addizione, facendo scorrere la mano destra lungo la linea blu fino ad arrivare al 2, e ripetendo a voce alta: “Due”, e la mano sinistra lungo la linea rossa fino al 6, ripetendo a voce alta: “Sei”.

Muovendo poi le mani insieme, e ripetendo “Due più sei uguale”, arrivata al risultato legge il numero: “Otto”.

Chiede quindi al bambino di cercare il cartellino dell’otto nella scatola dei risultati, e di posizionarlo a destra del cartellino dell’operazione, dopo il segno di uguale.

Quando il bambino è pronto a lavorare autonomamente, dopo il numero di esempi necessari, insegnante e bambino si scambiano i ruoli per qualche altra operazione, quindi il bambino può lavorare da solo e scegliere nei giorni successivi questo materiale ogni volta che lo desidera.

Presentazione 2

Presentiamo la Tavola al bambino, mostrandogli i numeri blu sull’asse orizzontale e i numeri rossi sull’asse verticale. Chiedere quindi al bambino di scegliere un cartellino dal cesto delle operazioni, e chiedergli di leggerlo a voce alta; ad esempio: “9 + 5=”

Mostrare al bambino come posizionare un dito sul 9 rosso (sull’asse verticale) e un altro dito sul blu 5 blu (sull’asse orizzontale). Far scorrere le dita fino a quando si incontrano, per ottenere la risposta. Dire ad alta voce, “9 + 5 = 14” .

Far ripetere al bambino. Fare un paio di esempi.

Una volta che il bambino capisce che cosa fare con le dita, gli insegneremo a prendere il cartellino del risultato da abbinare a quello dell’operazione, ed a registrare il risultato sui moduli.

Nei giorni seguenti il bambino può lavorare da solo, o con un compagno.

Esercizi con la TAVOLA IV

Per prima cosa esaminiamo la tavola col bambino: notiamo che essa è per dimensione solo la metà rispetto alla Tavola III. Non vi è alcuna riga superiore blu. Eppure ha lo stesso numero di operazioni.

I movimenti della mano sono leggermente diverse rispetto a quelli necessari per l’uso della Tavola III.

Il bambino sceglie un’addizione, ad esempio 8 + 4 =

Per trovare il risultato sulla Tavola, bisognerà posizionare  un dito sull’ 8 rosso, e un dito sul 4 rosso. I consiglio è quello di posizionare sempre l’indice sinistro sul numero più grande dell’operazione (in questo caso l’8)

Poi bisogna far scorrere le due dita verso destra, parallelamente, finché una delle due non può più andare avanti.

A questo punto scendere col dito arrivato allo “stop” fino ad incontrare l’altro dito (in questo caso nella casella del 12)

Dire, “8 + 4 = 12” Chiedete al bambino di fare un paio di prove, fino a capire  i movimenti della mano che vanno eseguiti, quindi chiedere al bambino di registrare l’operazione e la risposta.

Esercizi con la TAVOLA V

Il bambino sceglie un cartellino delle operazioni, ad esempio 6 + 2 = Posiziona l’indice sinistro sul 6 rosso e il destro sul 2 rosso.

Fa poi scorrere le dita verso destra, ciascun dito fino al “capolinea”: in questo caso il dito destro si fermerà sul 4 e il sinistro sul 12.

Ora fate incontrare le due dita tra loro, una salendo e l’altra scendendo le scale:

si incontreranno sull’8:

dire quindi ad alta voce:  “6 + 2 = 8”

Esercizi con la TAVOLA VI (Tombola dell’addizione)

Chiedete al bambino di prendere i tombolini e di metterli in ordine crescente a sinistra della Tavola.

Il bambino sceglie un’operazione tra i cartellini delle addizioni e la legge a voce alta, ad esempio: “7 + 4 =”

Il bambino dovrebbe conoscere la risposta, e prendere il tombolino corrispondente al risultato.

Quindi posizionerà un dito sul 7 blu e uno sul 4 rosso, e posizionerà il tombolino del risultato nel punto di incontro.

Tavola con asticine dell’addizione e tavole di controllo stampabili

Tavola con asticine dell’addizione e tavole di controllo stampabili. Il lavoro necessario a calcolare qualsiasi addizione si incentra sempre intorno al 10. Le addizioni parziali dei gruppi possono rimanere al di sotto della decina, raggiungerla o superarla. Per completare l’esercizio col tavoliere delle asticine, si offre un materiale scritto che conduce il bambino alla memorizzazione necessaria per il calcolo rapido.

In questo articolo trovi la descrizione dettagliata di tutte le tavole per l’addizione predisposte dalla Montessori, la tombola delle addizioni, i cartellini ed i moduli da compilare;  mentre trovi tutto il materiale pronto per la stampa qui:

Il tavoliere delle asticine è in due versioni:
– piccola
– grande.

Oltre al tavoliere il materiale comprende tutte le tavole di controllo previste da Maria Montessori, compresa la tombola dell’addizione:

– moduli per l’esercizio scritto
– cartelli delle operazioni per le addizioni
– tavola I: questa tavola rappresenta tutte le combinazioni che si possono effettuare con i moduli per l’esercizio scritto
– tavola per il passaggio dalla Tavola I alla Tavola II
– tavola II: in questa tavola dell’addizione i riquadri sono disposti in modo che tutti i 10 risultino sulla stessa linea
– tavola per il passaggio dalla Tavola II alla tavola III
– tavola III, che si legge come la tavola pitagorica. Le due linee direttrici della cornice ricalcano la successione della serie naturale dei numeri da 0 a 9
– tavola IV
– tavola V
– tavola VI: la tombola dell’addizione.

Questa è la tavola con asticine per l’addizione:

Moduli per l’esercizio scritto

Nei moduli per l’esercizio scritto avremo sulla colonna di sinistra (primo addendo) sempre lo stesso numero (da 1 a 9), che viene sommato successivamente coi numeri da 1 a 9 (secondo addendo, nella colonna centrale). A destra si scrivono i numeri che rappresentano i totali. Dopo la stampa ritagliate i moduli lungo le linee verticali.

Questo materiale per gli esercizi scritti conduce il bambino ad impadronirsi di tutte le possibili combinazioni intorno al 10, necessarie e sufficienti da memorizzare. Stampatene tutte le copie che il bambino desidera.

Esercizi per l’addizione

Questi cartellini contengono tutte le combinazioni possibili, che rientrano nelle tavole dell’addizione, ed a parte, tutti i risultati corrispondenti:

cartelli delle operazioni 

Prima tavola dell’addizione – Tavola I

Questa tavola rappresenta tutte le combinazioni che si possono effettuare con i moduli per l’esercizio scritto.

In essa ogni numero da 1 a 9 risulta addizionato con la serie dei numeri da 1 a 9.

Osservando la tavola, si vede che in ogni colonna è sempre presente un 10 come totale. Nella prima colonna (quella dell’1) il 10 è l’ultimo totale ottenuto, il penultimo nella colonna del 2, il terzultimo nella colonna del 3 ecc.. , mentre occupa la prima posizione nella colonna del 9.

Passaggio dalla tavola I alla tavola II

Il 10, nella tavola I, risulta sempre composto dall’unione di quegli stessi gruppi che il bambino ha avuto modo di conoscere fin da quando lavorava con le aste numeriche, quando, attraverso vari spostamenti, formava aste tutte di lunghezza 10 così:

9+1=10

 8+2=10

7+3=10

6+4=10.

Sappiamo che 5+5=10 non è possibile con le aste numeriche per la presenza nella serie di una sola asta del 5: in realtà potremmo eseguire l’operazione 5×2, facendo ruotare l’asta di 180° gradi.

Le rimanenti combinazioni

4+6=10

3+7=10

2+8=10

1+9=10

sono semplicemente l’inverso delle combinazioni precedenti.

Disporre di aste rigide che si possono spostare per formare aste di valore 10 chiarisce il fatto che le successive combinazioni si rifanno alle precedenti e fa risaltare la differenza che esiste tra le nove combinazioni considerate nel loro complesso e la necessità di dislocare gli elementi che costituiscono le prime quattro combinazioni per poter concretizzare le ultime quattro.

Le combinazioni rappresentano il fatto più importante. Prendiamo ad esempio la combinazione 3+7=10. Se su questa combinazione si interviene con il dislocamento dei pezzi componenti cambiandoli in 7+3=10, risulta sempre la stessa combinazione, anche se sotto un altro aspetto, quasi come succede per una stessa moneta vista nel suo dritto e nel suo rovescio.

Ciò che occorre memorizzare, quindi, è la combinazione, ed ogni combinazione di gruppi diseguali di presenta doppia, dal punto di vista della posizione dei termini che la compone. Questo “duplicato inverso” può essere eliminato in una tavola semplificata, nella quale siano presenti tutte le possibili combinazioni, dove il necessario è ciò che è sufficiente:

Per il passaggio dalla Tavola I alla Tavola II nelle scuole Montessori si utilizzano oggi dei rettangoli di cartoncino che vengono utilizzati per coprire via via le combinazioni ripetute sulla Tavola I: ne risulta che la tavola si presenta suddivisa in due parti triangolari. Soltanto in quella in basso a sinistra si possono leggere le 45 combinazioni rimaste. Tuttavia, per ottenere la Tavola II, dovremo idealmente tagliare in strisce verticali le combinazioni rimaste, per riallinearle in modo che tutte le addizioni con 10 per totale si trovino sulla stessa riga.

Seconda tavola dell’addizione – Tavola II

Nella seconda tavola dell’addizione i riquadri sono disposti in modo che tutti i 10 risultino sulla stessa linea.

In questa tavola si trovano tutte le combinazioni dei gruppi che non raggiungono la decina, che si trovano al di sopra della linea in cui i risultati sono uguali a 10;  tutte le combinazioni dei gruppi che superano la decina si trovano invece al di sotto della linea.

Nella Tavola II i riquadri organizzati secondo la linea del 10  offrono questo schema generale: in ogni riga sono presenti le combinazioni i cui totali risultano uguali.

Possiamo contrassegnare con colori meno accesi o con un carattere tipografico più piccolo, i duplicati delle combinazioni che è possibile eliminare alla scopo di ottenere quelle fondamentali. Le scomposizioni si verificano  più volte ripetute con termini invertiti e, siccome si distinguono le ripetizioni, contrassegnandole con un colore più chiaro (ad esempio), si vede che esse vanno aumentando di numero dalla seconda colonna in avanti; vale a dire che ci si imbatte in un doppione nella colonna del 2, in due in quella del 3, ecc… e in otto nella colonna del 9.

Nella Tavola II, ogni colonna ha inizio con la combinazione in cui i due addendi sono fra loro uguali: 1+1 2+2 3+3 ecc…, e le altre combinazioni si svolgono  (ma il 9+9 inizia e conclude la colonna) verso il basso.

Tutte le combinazioni della Tavola I si trovano nella Tavola II, procedendo a ritroso obliquamente e passando, in tal modo, attraverso tutte le colonne, fino alla prima.

Al di sopra della diagonale, cioè sopra la linea degli addendi uguali, si ritroverebbero le combinazioni ripetute in senso inverso (contrassegnate con colore pallido).

Se dalla Tavola I si eliminano dunque i duplicati, otteniamo una tavola semplificata contenente tutte le possibili combinazioni: questa Tavola II si può leggere e studiare come la tavola pitagorica per la moltiplicazione.

Leggendo le addizioni rimaste in ciascuna colonna, si vede che esse cominciano sempre con un numero addizionato a se stesso.

C0sì, ad esempio, considerando la colonna col 4+4:

– troviamo poi 3+4=7 (che si può leggere anche 4+3=7) nella colonna precedente e nella sua riga immediatamente superiore (salendo di una posizione in diagonale, insomma)

– nella colonna ancora più a sinistra (quella del 2) e nella riga ancora più in alto (salendo cioè in diagonale di un’altra posizione), troviamo 2+4=6 (che si può leggere anche 4+2=6).

– avvalendosi della proprietà commutativa dell’addizione, il bambino che lavora alle combinazioni del 4 troverà quelle non presenti (perchè già eliminate) rispettivamente nelle colonne del 3 del 2 e dell’1, dove il 4 è presente come secondo addendo.

La stessa cosa si osserva per tutti i numeri, procedendo obliquamente da destra a sinistra.

Per eseguire tutte le combinazioni di un dato numero partendo dalla minore, ad esempio tutte le addizioni relative al 3:

– partiamo da 1+3 della prima colonna

– proseguiamo in obliquo verso destra, di colonna in colonna, scendendo sempre di una riga: 2+3 3+3

– giunti a 3+3 si prosegue verticalmente sulla stessa colonna.

Terza tavola dell’addizione – Tavola III

Trascriviamo, uno sotto l’altro, colonna dopo colonna, i totali delle addizioni presenti nella Tavola I:

Costruiamo poi una cornice contenente la serie dei numeri da 1 a 9, prendendo lo zero per angolo. Si ottiene così questa tavola:

La Tavola III si legge come la tavola pitagorica: per esempio 8+5=13. Le due linee direttrici della cornice ricalcano la successione della serie naturale dei numeri da 0 a 9.

Lungo la diagonale si incontrano via via i doppi dei numeri presenti nella cornice, e fuori della diagonale non c’è altro che la ripetizione simmetrica delle addizioni presenti in ciascuna delle due metà. Per questo motivo basta imparare a memoria soltanto metà della tavola, cioè 45 combinazioni.

Quarta tavola dell’addizione – Tavola IV

Possiamo ridurre la Tavola III in questo modo:

– nella tavola, ogni numero da 1 a 9 si conclude, al termine  delle rispettive righe, con il suo doppio.

– si vedono inoltre i numeri uguali incasellati in allineamenti ascendenti e discendenti tra loro paralleli e perpendicolari alla diagonale principale

Per poter leggere la Tavola IV si procede verso destra fino a raggiungere il doppio del numero di partenza; se il totale dell’addizione è superiore a quel doppio (e questo accade quando il secondo addendo è maggiore del primo), si scende verticalmente fino alla riga che indica il livello del secondo addendo.

Prendiamo ad esempio l’addizione 4+7:

– si procede fino al doppio del 4 (4 x 2=8)

– si scende verticalmente fino alla riga del 7: il totale è 11.

Se desideriamo addizionare 5+8, partiamo allo stesso modo dal doppio del 5 (10) e poi scendiamo verticalmente fino alla riga dell’8, e troveremo il 13.

E’ evidente che, per eseguire ad esempio la somma 8+5, per la proprietà commutativa, opereremo in maniera che il primo addendo sia quello minore, cioè il 5.

Bisogna però dire che il bambino trova molto facilmente il totale in questo modo: punta i due addendi sulla striscia verticale, sposta poi le due dita orizzontalmente verso destra finchè un dito raggiunge la diagonale che limita la tavola, e a questo punto scende verticalmente fino ad incontrare la riga orizzontale indicata dall’altro dito.

Quinta tavola dell’addizione – Tavola V

Eseguendo parecchie di queste addizioni sulla Tavola IV si osserva che i risultati incontrati lungo la diagonale principale sono sempre numeri pari, e che quelli lungo la diagonale immediatamente al di sotto e parallela sono dispari. Perciò, queste due serie di numeri bastano ad indicare ogni possibile totale di addizioni entro il 18. Possiamo quindi ridurre la Tavola IV in questo modo:

ottenendo la Tavola V.

Prendiamo come esempio l’addizione 5+8

– si procede orizzontalmente fino ad incontrare i rispettivi doppi, cioè 10 e 16

– si percorre la diagonale con direzione convergente, raggiungendo il 12 nello scendere, e il 14 nel salire

– il risultato si trova nella casella che sta tra il 12 ed il 14, sulla diagonale dei numeri dispari: 13

Prendiamo ora ad esempio l’addizione 3+7:

– arrivati al doppio 6+14 si procede in senso contrario

– sulla diagonale troviamo la casella del 10: questa volta il totale, essendo pari, si trova proprio sulla diagonale principale.

Prendiamo poi ad esempio l’addizione 3+9:

– avanziamo tra il 6 e il 18

– le dita si incontrano su un numero comune che si trova sulla diagonale: 12.

 L’uso di due bastoncini per parte, che vengono opportunamente separati, dà a questo esercizio l’aspetto di gioco.

Dopo molti  esercizi, il bambino potrà arrivare ad alcuni interessanti punti di coscienza:

– la somma di due numeri pari è un numero pari

– la somma di un numero pari e di un numero dispari è un numero dispari

– la somma di due numeri dispari è un numero pari.

Inoltre, la somma di due numeri è uguale alla media dei loro doppi. Infatti, intendendo per media aritmetica “la somma di due o più numeri divisa per il numero di essi” avremo ad esempio:

4+6= (4×2) + (6×2) x 1/2 = [2 x (4+6)] :2 = 10

Tavola dell’Addizione VI – Tombola dell’addizione (o Tavola con tombolini)

Oltre a queste cinque tavole di confronto, viene usata poi una sesta tavola con 81 totali mobili: è la Tombola dell’addizione.

Il tavoliere delle asticine Montessori per l’addizione

Il tavoliere delle asticine Montessori per l’addizione – La tavola dell’addizione con le asticine serve a introdurre le addizioni oltre il dieci. Si tratta di un materiale che permette di studiare, analizzandoli nei loro particolari, i passaggi già esaminati attraverso il serpente dell’addizione.

Qui il post:

Il tavoliere delle asticine Montessori per l’addizione è una tavola suddivisa in 18 colonne e 10 righe, che formano una quadrettatura di 2 x 2 cm, nella versione originale. Una grossa linea verticale rossa situata fra la decima e l’undicesima (cioè dopo il numero 10) divide in due parti la tavola. Il materiale è completato da 9 asticine blu e nove asticine rosse, numerate entrambe da 1 a 9. Le asticine blu sono lisce, mentre quelle rosse sono quadrettate.

Le suddivisioni sono contrassegnate da numeri posti nella parte superiore che, in corrispondenza dei quadretti sottostanti, vanno da 1 a 10 alla sinistra della linea divisoria, e da 11 a 18 alla sua destra. I numeri da 1 a 10 sono scritti in rosso, mentre quelli da 11 a 18 in blu o nero. Sotto la striscia orizzontale che reca i numeri, sono presenti altre 10 strisce orizzontali: ne risulta una scacchiera rettangolare di 18 quadretti vuoti di base e di 10 di altezza.

Lo scopo del tavoliere delle asticine Montessori per l’addizione è quello di mostrare chiaramente il passaggio attraverso il 10. Accompagnano il materiale due serie di asticine di legno della stessa altezza dei quadretti e di lunghezza variabile da 1 a 9 quadretti:

– nella prima serie le asticine sono blu e non risultano suddivise in quadretti; alla fine portano il numero che corrisponde alla quantità che rappresentano

– nella seconda serie, di colore rosso, le asticine risultano suddivise in tanti quadretti quante sono le unità di ciascun gruppo da esse rappresentato. Inoltre, nell’ultimo quadretto di ogni asticina, è presente il numero corrispondente alle unità che compongono il gruppo.

Ho preparato una versione piccola del tavoliere (che sta in un foglio a4 orizzontale) e una versione un po’ più grande (occorre unire tra loro due fogli a4 per ottenere il tavoliere completo):

Oltre al tavoliere il materiale comprende tutte le tavole di controllo previste da Maria Montessori, compresa la tombola dell’addizione:

– moduli per l’esercizio scritto


– cartelli delle operazioni per le addizioni


– tavola I: questa tavola rappresenta tutte le combinazioni che si possono effettuare con i moduli per l’esercizio scritto


– tavola per il passaggio dalla Tavola I alla Tavola II


– tavola II: in questa tavola dell’addizione i riquadri sono disposti in modo che tutti i 10 risultino sulla stessa linea


– tavola per il passaggio dalla Tavola II alla tavola III


– tavola III, che si legge come la tavola pitagorica. Le due linee direttrici della cornice ricalcano la successione della serie naturale dei numeri da 0 a 9


– tavola IV


– tavola V


– tavola VI: la tombola dell’addizione.

Per utilizzare il materiale il bambino colloca sul tavoliere un’asticina blu, quella del 7 ad esempio, in alto a sinistra, subito al di sotto dei numeri;

pone poi accanto ad essa un’asticina rossa, ad esempio quella del 5.

Vede così che le due asticine insieme oltrepassano la linea rossa e arrivano al quadretto del 12, che rappresenta il totale dell’addizione considerata: 7+5=12.

L’asticina del 5 risulta a cavallo della linea rossa: 3 quadretti sulla sinistra e 2 sulla destra. Il 5 ha ceduto cioè 3 unità per completare il 10, e soltanto 2 hanno sconfinato nella seconda decina.

Esempi di addizione:

7+5=12

8+8=16

6+9=15

9+2=11

5+6=11

In questo stesso modo, si possono ripetere tutte le possibili combinazioni; ai bambini tra i 5 e i 6 anni piace molto elencare queste combinazioni una ad una.

Il tavoliere delle asticine Montessori per l’addizione, che serve ad esercitarsi sull’addizione parziale di gruppi entro la decina (serpente dell’addizione e tavoliere delle asticine), si completa con una serie di tavole di controllo per l’addizione ed esercizi scritti, che accompagnano il bambino nella memorizzazione necessaria per il calcolo veloce.

_________________________
Il tavoliere delle asticine Montessori per l’addizione

Il serpente dell’addizione Montessori

Il serpente dell’addizione è un esercizio che si può introdurre parallelamente a quello delle catene di 100

e delle catene di 1000,

e che ha lo scopo di far eseguire quasi meccanicamente piccole addizioni di unità, introducendo i bambini al calcolo mentale.

Per giocare al serpente dell’addizione occorrono semplicemente le barrette di perle colorate e quelle di perle dorate (per il 10).

Se non vuoi acquistarle, trovi il tutorial per realizzarle in proprio qui: 

Se non ti è possibile, puoi anche pensare di stampare la versione virtuale, che trovi qui: 

E’ necessario disporre di una certa quantità di barrette. Il numero rappresentato da ciascuna di esse si conosce contando le perle che la compongono. A poco a poco, però, il colore aiuterà a riconoscere la quantità ed eliminerà l’impegno di dover contare una perla alla volta.

Si comincia l’esercizio disponendo in riga una certa quantità di bastoncini, scegliendoli a caso. Almeno in un primo momento, però, sarà meglio disporre i bastoncini in modo tale che i bastoncini-addendi in gioco (due o più) non diano come somma oltre la decina.  Questi bastoncini andranno allineati su un lungo tavolo o sul pavimento. Per fare in modo che non risulti troppo lunga, la linea non è diritta ma sinuosa, e ricorda un serpente.

Si inizia il conteggio e non appena si giunge a 10 unità, si isolano i bastoncini sommati, sostituendoli con un bastoncino dorato della decina. Quindi, a partire dalla decina, si riprende a contare fino a raggruppare altre dieci unità e, ancora, un bastoncino dorato va a sostituire quelli sommati, che si tolgono dal  serpente. E così si procede fino ad esaurire il conteggio.

Assistiamo a questa trasformazione: il serpente muta pelle e diventa via via tutto d’oro ,  e bastoncini di uguale lunghezza  vanno via via ad occupare il posto di quelli di lunghezza diversa. Il conteggio è servito a trasformare in decine quantità minori, destinate a fondersi nel dieci, base del sistema decimale.

L’esercizio offre la possibilità di eseguire semplici addizioni nel limite del dieci, dal momento che ogni volta si comincia daccapo, senza tener conto di quei bastoncini delle decine che si vanno allineando lungo il cammino. E’ un’attività sempre uniforme che va ripetendosi e che finisce col rendere facile, rapida e meccanica l’addizione di numeri inferiori al dieci.

In realtà si tratta di un grande lavoro di conteggio delle unità, che costringe a riflettere e ad eseguire un certo numero di sottrazioni contemporaneamente alle addizioni, per calcolare la quantità eccedente la decina, dopo che essa è stata formata.

Su questa particolarità si sviluppa l’esercizio con tutte le sue varietà, risultanti dai possibili accostamenti, nella formazione del serpente, di bastoncini differenti.

Poniamo il caso che il serpente cominci coi numeri 6 e 5:

la loro somma dà 11. Si isolano i due bastoncini, sostituendoli con un altro dorato, ma c’è ancora una perla (l’ultima del bastoncino marrone) che completa la quantità espressa dalla somma 5+6, cioè 5+6 è uguale a 10+1.

Questo uno appartiene al 6 che è stato isolato insieme al bastoncino del 5, infatti 6 = 5+1. Questo 1 che rimane è ancora da contare.

Proseguendo, supponiamo che gli altri bastoncini che seguono siano 8 e 6. L’addizione che si presenta per prima è 1+8=9, quindi si continua a sommare 9+6 =  15 = 10+5. Si isolano perciò i bastoncini 1, 8 e 6, sostituendoli con un bastoncino del 10 e uno del 5. Questo 5 è ciò che è rimasto del 6.

Questi resti di cui abbiamo parlato  devono potersi distinguere dai bastoncini colorati che costituiscono il serpente. Questi resti rappresentano la quantità che si è dovuta mettere da parte, poichè il bastoncino colorato conteggiato solo parzialmente non può essere spezzato. Però bisogna ricordarsi di tenerne conto nell’addizione successiva. Per rappresentare questi resti, c’è un materiale complementare che elimina ogni possibile confusione: i bastoncini per i cambi:

1 – un bastoncino di 1 perla nera

2- un bastoncino di 2 perle nere

3 – un bastoncino di 3 perle nere

4 – un bastoncino di 4 perle nere

5 – un bastoncino di 5 perle nere

6 – un bastoncino di 5 perle nere e 1 bianca

7 – un bastoncino di 5 perle nere e 2 bianche

8 – un bastoncino di 5 perle nere e 3 bianche

9 – un bastoncino di 5 perle nere e 4 bianche

L’uso di nero e bianco e la loro particolare disposizione facilitano la scelta dei pezzi, che si riconoscono a prima vista.

Se non avete la possibilità di utilizzare perle vere per il gioco del serpente dell’addizione, ho preparato anche i bastoncini dei cambi in versione stampabile:

Esempi pratici

Facciamo degli esempi pratici. Componiamo questo serpente:

1 + 4 + 9 + 2 + 6 + 9 + 2 + 4 +8 + 6 + 3 + 7 + 5 + 3 + 4 +2

Il bambino comincia a contare le perle, e arrivato a 10 mette un segno a dividere la decina dal “resto”

Stacchiamo le barrette interessate al conteggio, e prendiamo la barretta della decina che abbiamo ottenuto, e la barretta del cambio relativa alla parte restante  (in questo caso 1+4+9= 10 e 4):

Mettiamo da una parte la decina, ed attacchiamo al serpente la barretta nera del cambio:

Conserviamo quindi a parte le perle colorate che abbiamo tolto al serpente, e che ci serviranno per la prova:

Continuiamo il gioco addizionando la barretta del cambio al serpente, fino a raggiungere una nuova decina. Nell’esempio dovremo sommare 4 + 2 + 6

Otterremo una seconda barretta della decina, e avremo bisogno di una barretta dei cambi da 2 da attaccare al serpente:

Eliminiamo da ogni conteggio la barretta da 4 del cambio precedente:

quindi attacchiamo il nuovo cambio ottenuto (due) al serpente, e conserviamo da una parte le decine ottenute, a dall’altra le barrette colorate tolte al serpente:

Ora dunque dobbiamo sommare 2 e 9; avremo una nuova decina e un cambio da 1:

Poi avremo 1+2+4+8, ed otterremo una decina e una perla del cambio da 5:

poi 5+ 6; avremo una decina ed un resto di 1:

poi 1+3+7, ed avremo 1 decina e un cambio da 1:

poi 1+5+3+4, ottenendo una decina e un cambio di 3:

la barretta del cambio da 3 si attacca alla parte terminale del serpente, che è 2:

non arriviamo a comporre una decina nuova, quindi l’operazione si conclude conteggiando un avanzo di 5, cioè una barretta dei cambi da 5:

Eliminiamo dal conteggio il vecchio cambio (quello di 3 perle) e poniamo il cambio da 5 insieme alle decine, e la barretta del 2 insieme alle altre barrette colorate tolte via via dal serpente.

Il risultato dell’addizione 1 + 4 + 9 + 2 + 6 + 9 + 2 + 4 +8 + 6 + 3 + 7 + 5 + 3 + 4 +2 è 75:

cioè 10 10 10 10 10 10 10 10 5. Ma come possiamo sapere se è corretto? Basterà contare tutte le perle colorate che formavano il serpente in origine, sempre raggruppando tra loro le barrette a formare decine colorate. Se ci occorre spezzettare le barrette, potremo sostituirle con un equivalente di perle nere dei cambi. Nel nostro esempio dovremo sostituire la barretta dei due con due barrette da uno:

ed avremo:

9+1=10,  9+1=10,  8+2=10,  7+3=10, 6+4=10, 6+4=10, 5+4+1=10, e 3+2=5; cioè 10 10 10 10 10 10 10 10 5

l’operazione è corretta. Il risultato è 75.

Torniamo ora all’immagine del serpente già presentato più sopra:

L’immagine rappresenta i cambi avvenuti per formare le decine. Le quantità originarie incolonnate a sinistra sono state via via sostituite, dando luogo alla disposizione rappresentata nella linea di perle a destra. Fra le due disposizioni  possiamo vedere ciò che rimaneva dei bastoncini che nel corso dell’operazione risultavano eccedere la decina: resti che vennero via via sommati con i bastoncini che li seguivano. Il risultato del serpente è 62, ossia: 10 10 10 10 10 10 2

A volte i bambini costruiscono un serpente molto lungo, che assomma a molte centinaia. A esercizio concluso, si contano i bastoncini delle decine disponendoli uno accanto all’altro, verticalmente: appena riuniti 10 bastoncini, si sostituiscono con un quadrato del centinaio, e così si prosegue coi cambi, fino alla fine. Il totale risalta facilmente, proprio per la differente forma dei risultanti gruppi del sistema decimale ( quadrato per le centinaia, linea per la decina, punto per le unità).

La verifica dell’operazione eseguita si effettua raccogliendo tutti i bastoncini via via usciti dal gioco e riunendoli a due a due (se possibile), in modo che ogni coppia costituisca una decina. Nel caso del serpente 5 6 8 6 2 5 1 4 9 3 4 7 9 si raggrupperanno così:

9+ 1

8+2

7+3

6+4

6+4

5+5

9

e si verificherà che ogni gruppo possa sostituirsi con una decina del risultato. In questo caso c’è perfetta corrispondenza:

L’esercizio del serpente fissa l’attenzione del bambino sulla difficoltà di contare per dieci. Questa difficoltà, ripetendosi costantemente, porta il bambino a procedere in modo esatto, dal momento che non lo preoccupa la serie di decine che via via si lascia indietro.

Nei metodi comuni, quando si addizionano gruppi di unità che formano più decine, questo accumulo gravoso e molesto si trascina, rendendo faticoso l’andare avanti. Invece la difficoltà di calcolo è unica ed è sempre la stessa, per quanto grande sia l’ampiezza dei conti da eseguire, e risiede in quel salto attraverso il 10 che presuppone un’attività mentale, esige cioè piccole addizioni e sottrazioni per arrivare a completare le decine, e il calcolo dei resti che devono essere aggiunti ai gruppi successivi.

Gli esercizi col serpente, ripetuti per lungo tempo, finiscono per rendere meccanico il lavoro della mente intorno al 10: a poco a poco sparisce la lenta attività di ragionamento, e si sostituisce con un meccanismo mentale. Le leggi che regolano le attività razionali affidano al deposito della memoria le conoscenze acquisite, per fare in modo che ci siano sempre energie disponibili da dedicare a lavori successivi. Questo deposito della memoria è un grande tesoro che permette di avanzare.

Si tratta della teoria montessoriana del “valore del subconscio”. Secondo la Montessori il subconscio è deposito e riserva di impressioni assorbite e di conoscenze acquisite. Il subconscio è paragonabile a una grande stanza buia nella quale sono immagazzinate le esperienze attraverso cui l’individuo è passato nel corso della sua vita. La stanza non è arredata: i mobili non vi sono disposti con una funzione, ma sono ammassati come in un magazzino. La mente che cerca una soluzione è simile a una torcia nelle mani di un ladro che sceglie la cosa per lui più preziosa in quel momento. Il fascio di luce si arresta: ha trovato quello che cercava, e questo cercare e trovare è ciò che chiamiamo “portare alla luce della coscienza”.

Le nuove acquisizioni, poi, devono prima essere filtrate dal ragionamento, e non si dirigono mai direttamente alla memoria ed ai suoi meccanismi.

Così, quando il bambino ha raggiunto un certo grado di maturità meccanica nel calcolo relativo ai passaggi attraverso il 10, i gruppi di decine già accumulati e lasciati indietro potranno venir trasportati di volta in volta nel posto che compete loro attraverso la memoria, grazie a passaggi che in sè non presentano ormai nessuna difficoltà.

Nell’esercizio del serpente, i due diversi lavori risultano separati, e questo permette un procedere rapido e senza fatica, consentendo il raggiungimento di risultati apprezzabili. Le decine che si accumulano si contano a parte, in una seconda fase, e i bambini lo fanno con grande piacere, provando la soddisfazione di chi si rende conto della propria ricchezza dopo aver fatto la fatica di “risparmiarla”.

Il gioco della banca per l’addizione (senza riporto) Montessori

Il gioco della banca per l’addizione (senza riporto) Montessori. Nell’addizione quantità più piccole (gli addendi), vengono messe insieme per formare un quantità più grande (la somma).

Noi usiamo le schede piccole dei numeri per gli addendi, e le schede grandi dei numeri per la somma, per rafforzare la comprensione di questo concetto. Nella sottrazione, invece, abbiamo una quantità più grande (il minuendo) da cui togliamo una quantità più piccola (il sottraendo), per ottenere la differenza.

Quindi usiamo le schede  grandi  per il minuendo, e le piccole per il sottraendo e la differenza. Rispettiamo questo modo di usare le schede dei numeri grandi e piccole per tutte le operazioni, anche nella moltiplicazione e nella divisione.

photo credit: http://www.lisheenmontessori.com/products.php?category=4
[wpmoneyclick id=89922 /]
[wpmoneyclick id=89910 /]
[wpmoneyclick id=89177 /]
[wpmoneyclick id=89175 /] 
 
 

Questo esercizio può essere presentato solo dopo che i  bambini hanno lavorato con gli esercizi di introduzione all’utilizzo delle perle dorate.

____________________

Presentazione individuale

Materiale necessario:
1. vassoio di perline dorate delle unità, uno di barre delle decine, uno di quadrati delle centinaia e uno dei cubi del 1000 (almeno 10 per tipo)
2. un set di carte grandi dei numeri (da 1 a 9000)
3. una scatola di segni numerici per addizione, sottrazione, divisione, moltiplicazione, e uguale
4. una scatola di carte contenenti addizioni senza riporto da svolgere. Nel nostro esempio useremo l’operazione: 6487 + 3212 = =
5. un vassoio piccolo vuoto e tre tappeti

 

Presentazione:

1. L’insegnante invita il bambino ad unirsi a lei in un nuovo esercizio,

2. e gli dice che giocheranno insieme “alla banca”.

3. Bambino ed insegnante insieme allestiscono il gioco portando sul pavimento i tre tappeti e tutto il materiale necessario.

4. Il  bambino sistemerà su un tappeto il materiale delle perle dorate allineando i cubi delle migliaia in una fila verticale a sinistra del tappeto, poi i quadrati delle centinaia, le barrette delle decine e infine le unità.

5. Allo stesso modo le carte dei numeri vengono allineate sul secondo tappeto.

6. Il bambino pesca a caso dalla scatola un’addizione da svolgere, e la legge a voce alta,

7. poi mette un numero di perline equivalente alla prima cifra dell’operazione sul vassoio piccolo, insieme al numero composto con le schede dei numeri. Nel nostro esempio il vassoio conterrà 6 perle delle unità,  4 barrette delle decine, 8 quadrati delle centinaia e 7 cubi delle migliaia e il numero composto con le schede 6000, 400, 80 e 7.

8. Sul terzo tappeto il bambino pone in numero sinistra e le perline, allineate in ordine, alla sua destra.

9. Il  bambino ripete il processo per la seconda cifra dell’operazione,  prendendo 3212 perline e componendo la stessa cifra con le schede. Pone il tutto sul tappeto, sotto alla prima cifra.

10. E’ possibile aggiungere a sinistra della seconda cifra la scheda del segno +.

11. Ora l’insegnante chiede al  bambino di sommare tra loro tutte le perle delle unità presenti sul tappeto, poi tutte le decine, le centinaia e le migliaia.

12. Il bambino dovrebbe contare 9 perle singole, 9 barrette del dieci,  6 quadrati delle centinaia  e 9 cubi del mille. Ogni volta che conta un un numero, pone la scheda equivalente  sotto le schede dei primi due numeri, a partire dalla carta delle unità.

13. A seconda di quanto il bambino gradisce il gioco, l’insegnante può lasciarlo libero di continuare da solo, o giocare facendo un’operazione ciascuno, mentre l’altro guarda.

Se l’esercizio diventa troppo facile per il  bambino, si può pensare di utilizzare numeri più grandi ( decine di migliaia, centinaia di migliaia, e milioni). Se è troppo difficile useremo cifre più piccole.

Presentazione a un gruppo di bambini

Scopo: capire il concetto di somma, imparare il vocabolario tecnico (addendi e somma)

Materiale:
Set di perline dorate (la “banca”);
schede grandi dei numeri,
3 set di numeri piccoli (schede uguali a quelle dei grandi numeri, ma di dimensioni inferiori),
tre vassoi
due tappeti.

Nell’addizione quantità più piccole (gli addendi), vengono messe insieme per formare un quantità più grande (la somma).

Noi usiamo le schede piccole dei numeri per gli addendi, e le schede grandi dei numeri per la somma, per rafforzare la comprensione di questo concetto.

Nella sottrazione, invece, abbiamo una quantità più grande (il minuendo) da cui togliamo una quantità più piccola (il sottraendo), per ottenere la differenza. Quindi usiamo le schede  grandi  per il minuendo, e le piccole per il sottraendo e la differenza.

Rispettiamo questo modo di usare le schede dei numeri grandi e piccole per tutte le operazioni, anche nella moltiplicazione e nella divisione.

Si tratta di un esercizio di gruppo. Per tutto l’esercizio i bambini staranno in piedi di fronte al lavoro, in modo da poter vedere le schede e le perline dal lato corretto e nel corretto ordine. L’insegnante può stare dall’altra parte.

Preparare una grande tavola, anche unendo tra loro più tavoli.

La banca delle perline dorate viene predisposta sulla sinistra, le schede dei numeri al centro, e la destra viene usata per eseguire le operazioni.

Sistemate le perline dorate sul tappeto verde, si sceglie un bambino che sieda accanto alla banca, il “banchiere”: il suo compito è quello di tenere il materiale in ordine e dare agli altri bambini le perle richieste.

Le schede dei grandi numeri vengono poste su un’altro tavolo, sempre nelle colonne che i bambini hanno imparato a comporre. Un bambino sarà responsabile delle schede dei grandi numeri e un altro delle schede piccole.

Questi bambini stanno in piedi, così possono raggiungere facilmente le schede sul tavolo. L’area sulla quale si eseguono le operazioni è coperta da un tappeto verde, e l’insegnante sarà lì di fronte. Poi c’è un vassoio per ogni bambino che raccoglierà un addendo.

L’insegnante dice ai bambini: “Adesso noi lavoreremo alla somma”, poi sceglierà un’operazione che non richieda il riporto, ad esempio 2435+1241.

Poi comporrà usando le schede piccole i due addendi e ne metterà uno su un vassoio e uno su un altro. Quindi consegnerà i vassoi a due bambini, e chiederà ad ognuno di leggere il numero presente sul suo vassoio. Quindi dirà: “Ora tu vai a raccogliere duemila-quattrocento-tredieci-5, e tu mille-duecento-quattrodieci-uno”.

I bambini vanno alla banca delle perline e tornano col le quantità corrispondenti:

L’insegnante non controlla il materiale che hanno portato. Prende un vassoio e sposta il materiale sul tavolo dicendo: “Tu hai portato 2000-400-3dieci-5”, poi prende la cifra composta con le schede piccole e la mette in alto.

Poi prende il secondo vassoio e fa lo stesso, disponendo il materiale e la cifra sotto a quelli del primo vassoio.

Ora l’insegnante porta l’attenzione dei bambini sulle quantità presenti sul tappeto dicendo: “Ora noi abbiamo 2000-400-3dieci-5, e qui abbiamo 1000-200-4dieci-1. Li sommo.

Prima aggiungo le unità” e dicendolo spinge le 2 unità vicine a quelle sopra. “Ora aggiungo i 10”, “Ora aggiungo le centinaia”, “Ora aggiungo le migliaia”.

“La somma è fatta: invece di avere due gruppi di perline dorate, adesso ho un gruppo unico.

“Noi abbiamo aggiunto 2435 a 1241. Adesso conteremo la somma e vedremo quanto c’è sulla tavola”. Quindi chiede a un bambino di contare il materiale.

Un bambino conterà le unità: 6. Allora l’insegnante chiederà al bambino incaricato di passarle la scheda dei grandi numeri 6 e la metterà sul tavolo accanto alle unità. E via così per tutti gli altri ordini di grandezza.

Infine l’insegnante sovrappone le schede dei grandi numeri e mette la cifra così composta sotto alle schede piccole che si trovano in alto, e ricostruisce il processo dicendo: “Avevamo 2435 e 1241. Li abbiamo sommati e adesso abbiamo 3676”, indicando ogni cifra mentre la nomina.

Indicando il 2435 dice: “Questo è un addendo”, poi indicando il 1241 “Questo è un addendo” e indicando il 3676 “Questa è la somma”.

L’esercizio viene ripetuto con altre cifre, ma sempre avendo cura di evitare i riporti.

_____________________________

_________________________________

Disclaimer: “Per redigere questa mia presentazione ho utilizzato i miei album e appunti personali e consultato vari album di altri autori e articoli nel web. Per leggere online o acquistare le copie legali di tali opere consultate segui i link:
– Mathematic primary guide di Infomontessori.com
– Album for ages 3-6 – Math di montessoriteacherscollective (Moteaco)
– Montessori teacher album – Math di Montessorialbum.com
– Math album di wikisori.org
– The casa 2,5-6 years – math di montessoricommons
– Beginning math di montessoriworld.org
– Teach your 3 to 7 year old math di John Bowman
Montessori Early Childhood math album di Montessori Tube
Module 5: Mathematics Manual A di Montitude.com
Mathematics teacher manual di khtmontessori.com
Primary class curriculum – second year di mymontessorihouse.com
Math teaching manual – primary ages di montessoriprintshop
Montessori matters: a mathematics manual di heutink-usa.com
MATHEMATICS MANUAL EARLY CHILDHOOD di themontessoriparent.com, che ha suggerito l’aggiunta di questo disclaimer in accordo con la sua politica di copyright.
Ho inoltre consultato i testi di riferimento di Maria Montessori per la matematica:
Il Metodo della Pedagogia Scientifica applicato all’educazione infantile nelle case dei bambini
La scoperta del bambino
L’autoeducazione nelle scuole elementari
.
Psicoaritmetica.
Per una bibliografia completa delle opere di Maria Montessori vai qui. Leggi anche la bibliografia e i link utili di seguito.

_______________________

BIBLIOGRAFIA E LINK UTILI


Maria Montessori – L’autoeducazione nelle scuole elementari – Garzanti

Maria Montessori – Il metodo della pedagogia scientifica applicato all’educazione infantile nelle case dei bambini. Edizione critica – Edizioni Opera Nazionale Montessori


Maria Montessori – Psicoaritmetica – Edizioni Opera Nazionale Montessori

Maria Montessori – Psicogeometria – Edizioni Opera Nazionale Montessori

[wpmoneyclick id=89935 /]
[wpmoneyclick id=89934/]
[wpmoneyclick id=89933 /]
[wpmoneyclick id=89928 /]
[wpmoneyclick id=89927 /]
[wpmoneyclick id=89924 /]
[wpmoneyclick id=89922 /]
[wpmoneyclick id=89919 /]
[wpmoneyclick id=89917 /]
[wpmoneyclick id=89914 /]
[wpmoneyclick id=89911 /]
[wpmoneyclick id=89906 /]
[wpmoneyclick id=89905 /]
[wpmoneyclick id=89902 /]
[wpmoneyclick id=89171 /]
 

Schede autocorrettive ADDIZIONI – seconda classe

Schede autocorrettive ADDIZIONI – seconda classe. Istruzioni: ogni foglio contiene due schede. Ritagliare lungo la metà orizzontale, quindi piegare ognuno dei due foglietti ricavati lungo la metà verticale. In questo modo otterrete delle schede fronte-retro. Il bambino può svolgere l’esercizio sulla scheda, quindi aprirla per correggersi.

Gli esercizi sono quelli comunemente utilizzati in seconda classe, come vedete. Ho sempre però difficoltà a trovare materiali che offrano ai bambini anche la possibilità dell’autocontrollo e dell’autocorrezione (per gli esercizi per i quali si può fare, naturalmente…).

Schede autocorrettive ADDIZIONI – seconda classe
download formato pdf qui:

_______________________________

Schede autocorrettive ADDIZIONI – seconda classe. 
Questi sono gli esercizi contenuti nelle schede autocorrettive.

Metodo Montessori MATEMATICA – Presentazione

Metodo Montessori MATEMATICA – Presentazione. Quando  pensiamo alla matematica insegnata col metodo Montessori, non possiamo considerare solamente l’uso dei materiali specifici di questa materia, perché anche lo sviluppo sensoriale  è di estrema  importanza nel gettare le basi per il pensiero matematico.

Anche nella Vita Pratica, lo sviluppo di “Ordine”,  “Concentrazione,  “Coordinazione” e  “Indipendenza” sono importanti per la mente  matematica.
La matematica è fatta di sequenze, si basa sull’ordine.

La capacità di concentrazione sul compito è importantissima nella Matematica per sviluppare il pensiero logico e la capacità di risolvere problemi. Sviluppare il pensiero  indipendente e l’abilità di soluzione dei problemi è una delle mete principali.

Perché così tanti bambini provano antipatia per la matematica?
Perché la trovano noiosa come un raffreddore, con tutti i suoi simboli astratti.

Si presume che bambini imparino, nei modelli di istruzione tradizionale, se gli insegnanti semplicemente correggono i loro errori e presentano la risposta corretta. Ma i bambini hanno bisogno di vedere, senza fretta o pressione, come i numeri cambiano, crescono, e sono in relazione tra loro. Hanno bisogno di sviluppare un modello mentale del territorio, prima di fare il primo passo.

Come ha detto Piaget “La conoscenza non è una copia della realtà. Conoscere  un oggetto un evento, non è semplicemente guardarlo e farsene una copia mentale, o un’immagine. Conoscere un oggetto è agire su lui. Sapere è cambiare, trasformare l’oggetto e capire il processo di questa trasformazione”.

Le matematica è molto importante nella vita quotidiana: il numero è dappertutto.  Maria Montessori scrisse: ” I bambini sono esortati dalle leggi della loro natura a trovare esperienze attive nel mondo circostante. Per questo  usano le loro mani: non solo per scopi pratici, ma anche per la conoscenza.”

Basandosi su questo principio, la matematica Montessori è presentata in modo divertente ed interessante, usando materiali concreti che aiutano i bambini a costruire solide fondamenta per i concetti astratti.

I bambini hanno la possibilità di scegliere liberamente i materiali che rispondono alle loro necessità interne. Il principio della scelta libera si aggiunge al principio della ripetizione dell’esercizio.
La scelta libera fatta dai bambini aiuta l’insegnante ad osservare le loro necessità psichiche e le loro tendenze.

La ripetizione è necessaria per il bambino per raffinare i suoi sensi, perfezionare le sue abilità e costruire il sapere sulle sue competenze. Attraverso scelta libera e ripetizione, i bambini possono compiere i loro progressi nella conoscenza, seguendo un ritmo che dipende dalle loro necessità interne, e non da quanto stabiliscono insegnanti o genitori.

I materiali per la matematica Montessori vengono proposti secondo questo ordine: si comincia con la numerazione da uno a dieci.

Metodo Montessori MATEMATICA – i materiali includono:

__________________

aste numeriche

[wpmoneyclick id=89158 /]

Metodo Montessori MATEMATICA – numeri tattili

[wpmoneyclick id=89165 /]

_____________________

Metodo Montessori MATEMATICA – numeri scritti

[wpmoneyclick id=89171 /]

__________________

Metodo Montessori MATEMATICA – scatola degli stecchini (casellario dei fuselli),

[wpmoneyclick id=89173 /]

____________________

numeri scritti e gettoni ed altri giochi coi numeri

 [wpmoneyclick id=89174 /]

__________________

Metodo Montessori MATEMATICA

Grazie alla manipolazione di questi  materiali, i bambini non solo costruiscono il concetto di base del numero da uno a dieci memorizzando il naturale ordine di numeri, ma anche riconoscono le relazioni tra quantità e qualità.

Dopo aver acquisito padronanza con questi concetti di base, i bambini hanno bisogno di capire il valore posizionale delle cifre. Si presenta ai bambini il Sistema Decimale, facendo esplorare il valore posizionale delle cifre entro le migliaia.

Lavorando con le perle doratele carte dei numeri grandi i bambini svilupperanno il concetto di quantità oltre il dieci.

[wpmoneyclick id=89175 /]

____________________________

Quando riconoscono i simboli scritti e il loro significato, hanno bisogno di esercitarsi nel ricordare i numeri. Questa abilità si svilippa attraverso l’uso dei materiali seguenti:

le barre di perline colorate

[wpmoneyclick id=89180 /]

_________________

[wpmoneyclick id=89181 /]

_________________

le tavole di Seguin

 [wpmoneyclick id=89182 /]

 ______________________

L’insegnante ha un importante ruolo in tutto ciò: deve saper comprendere cosa i bambini rivelano attraverso il loro lavoro; non deve insistere ripetendo la lezione, o comunicare al bambino che ha commesso un errore o che non ha capito.

L’insegnante insegna poco ed osserva molto, perché solo così può aiutare bambini a rimuovere i loro ostacoli e può guidarli al passo successivo, secondo le necessità e i desideri dei bambini.

Metodo Montessori MATEMATICA – qui trovi la lista dei materiali Montessori dai 3 ai 6 anni per la matematica, con tutti i links che possono esserti utili…

 [wpmoneyclick id=”97326″ /]

Exit mobile version

E' pronto il nuovo sito per abbonati: la versione Lapappadolce che offre tutti i materiali stampabili scaricabili immediatamente e gratuitamente e contenuti esclusivi. Non sei ancora abbonato e vuoi saperne di più? Vai qui!

Abbonati!